Ultime notizie: gli anodi di silicio in lega di boro triplicano la durata delle batterie agli ioni di litio

|

Ultime notizie: gli anodi di silicio in lega di boro triplicano la durata delle batterie agli ioni di litio

Astratto

Stabilizzare l'interfase elettrolitica solida (SEI) rimane una sfida fondamentale per gli anodi delle batterie agli ioni di litio a base di silicio. L'unione di silicio con elementi secondari come il boro si è rivelata una strategia promettente per migliorare la durata del ciclo di vita degli anodi di silicio, ma il meccanismo sottostante rimane poco chiaro. Per colmare questa lacuna conoscitiva, si studia sistematicamente come la concentrazione di boro influenzi le prestazioni della batteria. Questi risultati mostrano un aumento pressoché monotono della durata del ciclo di vita con un contenuto di boro più elevato, con elettrodi ricchi di boro che superano significativamente le prestazioni del silicio puro. Inoltre, gli anodi in lega silicio-boro presentano una durata quasi tre volte superiore rispetto al silicio puro. Attraverso un'analisi meccanicistica dettagliata, si escludono sistematicamente fattori contribuenti alternativi e si propone che il miglioramento della passivazione derivi da un forte dipolo permanente sulla superficie delle nanoparticelle. Questo dipolo, formato da boro sottocoordinato e altamente acido secondo Lewis, crea uno strato statico e denso di ioni che stabilizza l'interfaccia elettrochimica, riducendo la decomposizione parassita dell'elettrolita e migliorando la stabilità a lungo termine. Questi risultati suggeriscono che, nell'ambito del SEI, il doppio strato elettrico è un fattore importante nella passivazione superficiale. Questa intuizione fornisce uno spazio di parametri inesplorato per l'ottimizzazione degli anodi di silicio nelle batterie agli ioni di litio di prossima generazione.

Riferimento

https://doi.org/10.1002/aenm.202501074

In che modo la tecnologia LiTFSI fa la differenza nelle batterie al sodio-metallo?

|

In che modo la tecnologia LiTFSI fa la differenza nelle batterie al sodio-metallo?

Nota dell'editore: le batterie al sodio-metallo sono importanti per l'accumulo di energia su larga scala e per i dispositivi elettronici mobili, in quanto dispositivi di accumulo di energia ad alta densità energetica e basso costo. Tuttavia, le prestazioni dell'elettrolita e del SEI limitano la durata del ciclo e la velocità di carica/scarica delle batterie al sodio-metallo. In che modo la tecnologia LiTFSI fa la differenza nelle batterie al sodio-metallo? Ecco un esempio. Grazie a una ricerca speciale del team di Shuang Wan.

Astratto

La costruzione di un'interfase elettrolitica solida (SEI) robusta e ricca di inorganici è uno degli approcci cruciali per migliorare le prestazioni elettrochimiche delle batterie al sodio metallico (SMB). Tuttavia, la bassa conduttività e la distribuzione dei comuni inorganici nella SEI disturbano la diffusione di Na+ e inducono una deposizione non uniforme di sodio. In questo caso, costruiamo una SEI unica con inorganici ad alta conduttività distribuiti uniformemente, introducendo un LiTFSI auto-sacrificante nell'elettrolita carbonato a base di sale di sodio. L'effetto di competizione riduttiva tra LiTFSI e FEC facilita la formazione della SEI con inorganici distribuiti uniformemente. In questa fase, il Li3N ad alta conduttività e gli inorganici forniscono domini di trasporto ionico rapido e siti di nucleazione ad alto flusso per Na+, favorendo così una rapida deposizione di sodio ad alta velocità. Pertanto, il SEI derivato da LiTFSI e FEC consente alla cella Na∥Na3V2(PO4)3 di mostrare una ritenzione di capacità dell'89,15% (87,62 mA hg–1) a una velocità ultraelevata di 60 °C dopo 10.000 cicli, mentre la cella senza LiTFSI fornisce solo il 48,44% di ritenzione di capacità anche dopo 8.000 cicli. Inoltre, la cella a sacchetto Na∥Na3V2(PO4)3 con lo speciale SEI presenta una ritenzione di capacità stabile del 92,05% a 10 °C dopo 2.000 cicli. Questo esclusivo design del SEI illustra una nuova strategia per consentire alle SMB di operare in condizioni di velocità estremamente elevate.

Copyright © 2023 American Chemical Society

Riferimento

https://pubs.acs.org/doi/10.1021/jacs.3c08224

LiTFSI offre un grande aiuto per le elevate prestazioni delle batterie al litio allo stato solido a base di solfuro

|

LiTFSI offre un grande aiuto per le elevate prestazioni delle batterie al litio allo stato solido a base di solfuro

Nota dell'editore: In che modo il LiTFSI, CAS: 90076-65-6, contribuisce allo sviluppo di batterie al litio allo stato solido a base di solfuro? Ecco un esempio. Grazie alla straordinaria ricerca del team di Fangyang Liu.

Astratto

La stretta finestra elettrochimica degli elettroliti a base di solfuro può portare a diversi meccanismi di guasto alle interfacce tra il lato catodico e quello anodico. L'introduzione di distinte strategie di modifica per il lato catodico e quello anodico aumenta la complessità del processo di fabbricazione delle batterie al litio allo stato solido a base di solfuro (ASSLB). In questo lavoro, è stata impiegata una strategia di modifica integrata introducendo gusci di bis(trifluorometansolfonil)immide di litio (LiTFSI) durante il processo di raffinazione a umido di Li6PS5Cl (LPSC), che ha permesso di costruire con successo in situ interfacce fluorurate robuste sia sul lato catodico che su quello anodico simultaneamente. Sul lato anodico del litio, la ridotta conduttività elettronica di LiTFSI@LPSC e la generazione di un'interfaccia fluorurata hanno efficacemente soppresso la crescita dei dendriti del litio, il che è stato ulteriormente confermato dai calcoli della teoria del funzionale della densità (DFT). Di conseguenza, la cella Li|LiTFSI@LPSC|Li ha raggiunto una densità di corrente critica fino a 1,6 mA cm−2 e prestazioni di ciclaggio stabili per oltre 1500 ore a 0,2 mA cm−2. Sul lato catodico, la cella LiTFSI@LPSC non solo ha migliorato il trasporto di Li+ all'interno del catodo composito, ma ha anche decomposto in situ il guscio LiTFSI nell'interfase elettrolitica catodica (CEI) a base di LiF. Il mantenimento della capacità ha raggiunto il 98,6% dopo 500 cicli a 2 °C con LiNi0,83Co0,11Mn0,06O2 (NCM83) a un'elevata tensione di cut-off di 4,6 V. La cella LiTFSI@LPSC funzionalizzata consente una modifica interfacciale completa e completa sia per il lato anodo che per quello catodico, semplificando significativamente la progettazione dell'interfaccia nelle batterie ricaricabili autoalimentate a base di solfuro e garantendo al contempo prestazioni elettrochimiche eccezionali.

Riferimento

https://doi.org/10.1016/j.ensm.2025.104131

Quali sono le novità nelle applicazioni LiTFSI?

| Jerry Huang

Quali sono le novità nelle applicazioni LiTFSI?

La bis(trifluorometansolfonil)immide di litio (LiTFSI), con formula molecolare C2F6LiNO4S2, è una sostanza organica bianca, cristallina o polverosa, con elevata stabilità elettrochimica e termica. Come additivo elettrolitico, la LiTFSI può essere applicata a vari sistemi di batterie, come batterie al litio primarie, batterie al litio secondarie e batterie al litio allo stato solido.

La bis(trifluorometilsolfonil)immide di litio (LiTFSI), un componente chiave dell'elettrolita delle batterie agli ioni di litio, è nota per la sua eccellente stabilità termica ed elettrochimica. Grazie alla sua esclusiva configurazione molecolare, questo sale di litio forma una solida rete anionica all'interno dell'elettrolita, che non solo riduce significativamente la viscosità della soluzione, ma aumenta anche drasticamente la velocità di trasferimento degli ioni di litio. Questa proprietà si traduce direttamente in un'elevata efficienza nel processo di carica e scarica della batteria, rendendo il LiTFSI ideale per migliorare le prestazioni complessive delle batterie agli ioni di litio. Soprattutto nella ricerca e sviluppo di batterie al litio allo stato solido, il LiTFSI mostra un grande potenziale. Inoltre, mostra risultati molto positivi nella ricerca sulle batterie al sodio metallico (SMB) e si prevede che guiderà ulteriori innovazioni nella tecnologia delle batterie. Tuttavia, la stabilità delle prestazioni del LiTFSI in ambienti complessi e sistematici rappresenta un problema urgente da risolvere nella ricerca attuale.

Il bis(trifluorometilsolfonil)immide di litio (LiTFSI) ha iniziato ad essere utilizzato in grandi quantità in nuovi tipi di batterie, come le batterie agli ioni di litio allo stato solido, tra cui batterie allo stato solido polimeriche, batterie allo stato solido solfuriche e batterie allo stato solido ossidiche. Il LiTFSI ha dimostrato di essere utile per migliorare le prestazioni delle batterie, in particolare nella protezione dell'anodo, facilitando la ricarica rapida e garantendo un elevato vantaggio in un ampio intervallo di temperature. Il bis(trifluorometansolfonil)immide di litio è uno degli additivi elettrolitici più importanti per le batterie al litio, in grado di migliorare la stabilità elettrochimica, le prestazioni di ciclaggio e la conduttività dell'elettrolita, e ha un effetto meno corrosivo sul foglio di alluminio a tensioni più elevate, il che può essere adattato per aumentare la densità energetica delle batterie nel settore dei veicoli elettrici.

Si prevede la costruzione di un sistema di alimentazione a basse emissioni di carbonio

| Jerry Huang

Il 15 luglio 2024, la Commissione nazionale cinese per lo sviluppo e la riforma (NDRC) e l'Amministrazione nazionale per l'energia (NEA) hanno pubblicato il "Programma sulla trasformazione e la costruzione di centrali elettriche a carbone a basse emissioni di carbonio (2024-2027)", in cui si afferma che: Entro il 2025 , verranno avviati tutti i progetti di trasformazione a basse emissioni di carbonio delle prime centrali elettriche a carbone e verranno messe in atto una serie di tecnologie energetiche a basse emissioni di carbonio; le emissioni di carbonio dei progetti in questione saranno ridotte di circa il 20% per kilowattora rispetto a quelle del 2023, ovviamente inferiori anche alle emissioni di carbonio delle centrali elettriche a carbone avanzate esistenti, esplorando così preziose esperienze per il pulito e a basso consumo energetico. -trasformazione del carbonio delle centrali elettriche a carbone. Adattando la trasformazione a basse emissioni di carbonio delle attuali centrali a carbone e la costruzione di nuove centrali a carbone a basse emissioni in modo coordinato, puntiamo ad accelerare la costruzione di un nuovo sistema energetico che sia pulito, a basse emissioni di carbonio, sicuro e altamente sostenibile. efficiente.

Secondo le previsioni, entro il 2030, le emissioni di CO2 delle centrali elettriche a carbone saranno di circa 4 miliardi di tonnellate. Pertanto, le tecnologie a basse emissioni di carbonio dell’industria energetica a carbone rappresentano il supporto chiave per raggiungere l’obiettivo cinese “2030-2060 Carbon Peak & Carbon Neutral”. Quindi, come potrebbe l’industria dell’energia dal carbone raggiungere la decarbonizzazione?

01 Metodi di trasformazione e costruzione della decarbonizzazione dell'energia da carbone

Secondo il Programma sulla trasformazione e costruzione di centrali elettriche a carbone a basse emissioni di carbonio (2024-2027), esistono tre modi specifici per trasformare l’energia da carbone in energia a bassa carbonizzazione:

1, Miscelazione della biomassa. Utilizzando risorse di biomassa come rifiuti agricoli e forestali, rifiuti vegetali e colture di energia rinnovabile, e prendendo in considerazione l’offerta sostenibile di risorse di biomassa, la sicurezza, la flessibilità, l’efficienza operativa e la fattibilità economica, le unità di generazione di energia alimentate a carbone dovrebbero essere abbinate alla biomassa produzione di energia. Dopo la trasformazione e la costruzione, le centrali elettriche a carbone dovrebbero essere in grado di miscelare più del 10% di combustibili da biomassa, riducendo così significativamente il consumo di carbone e le emissioni di carbonio.

2, miscelazione verde dell'ammoniaca. Utilizzando l’ammoniaca verde miscelata con le centrali a carbone per generare elettricità e sostituire parte del carbone. Le centrali a carbone dovrebbero essere in grado di bruciare più del 10% di ammoniaca verde dopo la trasformazione e la costruzione, con l’obiettivo di ridurre ovviamente il consumo di carbone e i livelli di emissione di carbonio.

3, Cattura, utilizzo e stoccaggio del carbonio. Adottare metodi chimici, adsorbimento, membrane e altre tecnologie per separare e catturare l'anidride carbonica nei gas di scarico delle caldaie a carbone. Cattura, purifica e comprime l'anidride carbonica attraverso la regolazione della pressione e della temperatura. Promuovere l’applicazione di tecnologie geologiche come l’efficiente guida petrolifera mediante anidride carbonica. Utilizzare tecnologie chimiche come l'anidride carbonica più l'idrogeno per ottenere metanolo. Implementare lo stoccaggio geologico dell’anidride carbonica in base alle condizioni locali.

02 Percorsi di transizione verso l’energia da carbone a basse emissioni di carbonio

L’espansione dell’energia pulita, compresa l’energia idroelettrica, eolica e solare, è la chiave per realizzare i progetti di alimentazione a basse emissioni di carbonio. Dopo aver soddisfatto la crescente domanda di energia, è necessaria un’ulteriore sostituzione dell’attuale energia a carbone per la transizione energetica a basse emissioni di carbonio. Dopo il 2030, l’energia non fossile sostituirà l’attuale energia a carbone e diventerà la parte principale della fornitura elettrica; e dopo il 2050, la quota di produzione di energia elettrica da carbone sarà inferiore al 5% rispetto alla fornitura elettrica totale della Cina.

Secondo uno studio della Renmin University of China sulle prospettive di sviluppo della transizione cinese a basse emissioni di carbonio dell’energia dal carbone, questa può essere suddivisa nelle seguenti tre fasi:

1, Da ora al 2030 come periodo di preparazione per una transizione a basse emissioni di carbonio, la capacità di energia da carbone continuerà a crescere moderatamente prima del 2030, allo stesso tempo, la nuova energia diventerà la maggior parte dell’aumento della fornitura di energia e la quota di energia eolica e solare la capacità installata sarà superiore al 40% entro il 2030.

2, Anno 2030-2045 come periodo di rapida transizione, dopo il 2030, la quota di energia eolica e solare supererà rapidamente quella dell’energia a carbone, diventando la principale fonte di energia del sistema energetico. Le centrali elettriche a carbone devono essere abbinate alla tecnologia della biomassa, alla CCUS e ad altre tecnologie pulite a basse emissioni di carbonio, riducendo così le emissioni di carbonio.

3, Anno 2045-2060 come periodo di rafforzamento e miglioramento dell'alimentazione elettrica, entro il 2050 la domanda di elettricità sarà saturata, l'energia dal carbone sarà completamente trasformata in una fornitura di energia di aggiustamento, servendo la digestione e l'assorbimento della principale potenza dell'energia eolica-solare e fornendo energia di emergenza e di riserva. Prospettive sull’energia eolica e solare rispetto all’energia a carbone

Ecco un esempio di una base di potere nel deserto di Kubuqi. La capacità totale pianificata della base elettrica di Kubuqi è di 16 milioni di kilowatt, compresa l'energia fotovoltaica di 8 milioni di kilowatt, l'energia eolica di 4 milioni di kilowatt e la capacità avanzata di energia a carbone ad alta efficienza di 4 milioni di kilowatt. I progetti di energia solare realizzati sono spettacolari, con 2 milioni di kW di capacità fotovoltaica installata già in funzione. Se tutti i progetti venissero completati, si stima che circa 40 miliardi di kWh di elettricità potrebbero essere consegnati a milioni di famiglie all’anno, di cui l’energia pulita rappresenterebbe oltre il 50% del totale, il che equivale a risparmiare circa 6 milioni di tonnellate di energia elettrica. carbone standard e riducendo le emissioni di anidride carbonica di circa 16 milioni di tonnellate all’anno. Si prevede che saranno in arrivo altre basi di energia pulita.Energia solare Kubuqi01 Primi pannelli solari costruitiEnergia solare Kubuqi02 Pannelli solari un anno dopoEnergia solare Kubuqi03 Base di energia solare cinque anni dopo

Per quanto riguarda i veicoli elettrici e le relative infrastrutture di ricarica, secondo le statistiche, alla fine di maggio 2024, il numero totale di infrastrutture di ricarica per veicoli elettrici si era accumulato fino a 9,92 milioni di unità in tutta la Cina, con un aumento del 56% su base annua. Tra questi, le strutture di ricarica pubbliche e il settore privato sono aumentati rispettivamente a 3,05 milioni di unità e 6,87 milioni, con tassi di crescita rispettivamente del 46% e del 61% su base annua. Ciò significa che la Cina ha costruito la più grande rete di infrastrutture di ricarica al mondo, coprendo la più ampia area di servizio e la più ampia gamma di tipologie di ricarica.

Rilasciato un metodo verde altamente efficiente ed economico per il riciclaggio di LCO e LIB ternarie

| Jerry Huang

Rilasciato un metodo verde altamente efficiente ed economico per il riciclaggio di LCO e LIB ternarie

Nota dell'editore: le batterie agli ioni di litio sono ora ampiamente utilizzate in una varietà di dispositivi elettronici, veicoli elettrici e accumulo di energia su scala di rete. La domanda globale di batterie agli ioni di litio continua a crescere in modo significativo. Si stima che entro il 2030 il volume globale di batterie agli ioni di litio esaurite supererà gli 11 milioni di tonnellate, che diventeranno un’enorme fonte di inquinamento che potrebbe minacciare seriamente l’ambiente e la salute pubblica. Allo stesso tempo, la crescente domanda di batterie agli ioni di litio si traduce in una crescente domanda di litio e cobalto. D'altra parte, il contenuto di litio e cobalto nei catodi LIB è rispettivamente pari al 15% e al 7% in peso, un valore molto superiore a quello dei minerali e delle salamoie. Pertanto, il recupero degli elementi metallici nei catodi LIB esausti è di grande importanza ambientale, sociale ed economica. Attualmente il recupero delle batterie agli ioni di litio si divide principalmente in tre fasi: pretrattamento, estrazione del metallo e separazione del metallo. Nella ricerca e nello sviluppo della fase di estrazione dei metalli del processo di riciclaggio, il processo idrometallurgico è una delle opzioni più praticabili grazie all'elevato tasso di lisciviazione dei metalli e alla purezza soddisfacente dei prodotti recuperati. Tuttavia, il processo non è così rispettoso dell'ambiente, né altamente economico, perché l'uso di acidi inorganici porta sottoprodotti pericolosi; mentre gli acidi organici richiedono agenti riducenti aggiuntivi o tempi di reazione più lunghi e temperature più elevate per il recupero del metallo.

I ricercatori del team di Zhong Lin Wang ci presentano un possibile metodo ecologico, altamente efficiente ed economico per riciclare le LIB, comprese le batterie all’ossido di litio cobalto (LCO) e le batterie al litio ternarie.

Astratto

Con la tendenza globale verso la neutralità del carbonio, la domanda di batterie agli ioni di litio (LIB) è in continuo aumento. Tuttavia, gli attuali metodi di riciclaggio delle LIB esaurite necessitano di miglioramenti urgenti in termini di ecocompatibilità, costi ed efficienza. Qui proponiamo un metodo meccano-catalitico, denominato elettrocatalisi a contatto, che utilizza radicali generati dall'elettrificazione a contatto per promuovere la lisciviazione del metallo sotto l'onda ultrasonica. Usiamo anche SiO2 come catalizzatore riciclabile nel processo. Per le batterie all’ossido di litio cobalto (III), l’efficienza di lisciviazione ha raggiunto il 100% per il litio e il 92,19% per il cobalto a 90 °C entro 6 ore. Per le batterie al litio ternarie, le efficienze di lisciviazione di litio, nichel, manganese e cobalto hanno raggiunto rispettivamente il 94,56%, 96,62%, 96,54% e 98,39% a 70°C, entro 6 ore. Prevediamo che questo metodo possa fornire un approccio ecologico, ad alta efficienza ed economico per il riciclaggio LIB, soddisfacendo la domanda in crescita esponenziale di produzioni LIB.

Riferimento

https://doi.org/10.1038/s41560-023-01348-y

Rilasciato un metodo efficiente, ecologico ed economico per il riciclaggio delle batterie LFP

| Jerry Huang

Rilasciato un metodo efficiente, ecologico ed economico per il riciclaggio delle batterie LFP

Nota dell'editore: le batterie agli ioni di litio sono ora ampiamente utilizzate in una varietà di dispositivi elettronici, veicoli elettrici e accumulo di energia su scala di rete. La domanda globale di batterie agli ioni di litio continua a crescere in modo significativo. Si stima che entro il 2030 il volume globale di batterie agli ioni di litio esaurite supererà gli 11 milioni di tonnellate, che diventeranno un’enorme fonte di inquinamento che potrebbe minacciare seriamente l’ambiente e la salute pubblica. Allo stesso tempo, la crescente domanda di batterie agli ioni di litio si traduce in una crescente domanda di litio e cobalto. D'altra parte, il contenuto di litio e cobalto nei catodi LIB è rispettivamente pari al 15% e al 7% in peso, un valore molto superiore a quello dei minerali e delle salamoie. Pertanto, il recupero degli elementi metallici nei catodi LIB esausti è di grande importanza ambientale, sociale ed economica. Attualmente il recupero delle batterie agli ioni di litio si divide principalmente in tre fasi: pretrattamento, estrazione del metallo e separazione del metallo. Nella ricerca e nello sviluppo della fase di estrazione dei metalli del processo di riciclaggio, il processo idrometallurgico è una delle opzioni più praticabili grazie all'elevato tasso di lisciviazione dei metalli e alla purezza soddisfacente dei prodotti recuperati. Tuttavia, il processo non è così rispettoso dell'ambiente, né altamente economico, perché l'uso di acidi inorganici porta sottoprodotti pericolosi; mentre gli acidi organici richiedono agenti riducenti aggiuntivi o tempi di reazione più lunghi e temperature più elevate per il recupero del metallo.

I ricercatori del team di Zhong Lin Wang ci offrono un possibile metodo ecologico, altamente efficiente ed economico per riciclare le LIB, in particolare le batterie LFP.

Astratto

Il riciclaggio delle batterie al litio ferro fosfato (LFP), che rappresentano oltre il 32% della quota di mercato mondiale delle batterie agli ioni di litio (LIB), ha attirato l’attenzione a causa delle preziose risorse degli elementi e delle preoccupazioni ambientali. Tuttavia, le tecnologie di riciclaggio all’avanguardia, che in genere si basano su metodi elettrochimici o di lisciviazione chimica, presentano problemi critici come procedure noiose, enorme consumo di prodotti chimici/elettricità e inquinamento secondario. Qui riportiamo un innovativo sistema autoalimentato composto da un reattore di riciclaggio elettrochimico LIB e un nanogeneratore triboelettrico (TENG) per il riciclaggio di LFP esaurito. Nel reattore di riciclaggio elettrochimico LIB, la coppia Cl−/ClO− generata elettrochimicamente nella soluzione NaCl viene adottata come mediatore redox per scomporre l'LFP in FePO4 e Li+ tramite la reazione di targeting redox senza sostanze chimiche aggiuntive. Inoltre, un TENG che utilizza componenti scartati dalle LIB, inclusi involucri, pellicole di alluminio-plastica e collettori di corrente, è progettato per ridurre drasticamente gli inquinanti secondari. Inoltre, il TENG raccoglie energia eolica, fornendo una potenza di 0,21 W per alimentare il sistema di riciclaggio elettrochimico e caricare le batterie. Pertanto, il sistema proposto per il riciclaggio dell'LFP esaurito presenta elevata purezza (Li2CO3, 99,70% e FePO4, 99,75%), caratteristiche autoalimentate, procedura di trattamento semplificata e un elevato profitto, che possono promuovere la sostenibilità delle tecnologie LIB.

Riferimento

http://dx.doi.org/10.1039/D3EE01156A

Batterie agli ioni di litio a carica rapida da 50 °C utilizzando un anodo di grafite

|

Batterie agli ioni di litio a carica rapida da 50 °C utilizzando un anodo di grafite

Astratto

Le batterie agli ioni di litio hanno fatto breccia nel mercato dei veicoli elettrici con densità di energia elevate, ma soffrono ancora di una cinetica lenta limitata dall'anodo di grafite. Qui vengono progettati elettroliti che consentono una ricarica estremamente rapida (XFC) di un anodo di grafite microdimensionato senza placcatura al litio. La caratterizzazione e le simulazioni complete sulla diffusione di Li+ nell'elettrolita sfuso, nel processo di trasferimento di carica e nell'interfase dell'elettrolita solido (SEI) dimostrano che un'elevata conduttività ionica, una bassa energia di desolvatazione di Li+ e la SEI protettiva sono essenziali per XFC. In base al criterio, vengono progettati due elettroliti a carica rapida: LiFSI a bassa tensione da 1,8 m in 1,3-diossolano (per celle LiFePO4||grafite) e LiPF6 ad alta tensione da 1,0 m in una miscela di 4-fluoroetilene carbonato e acetonitrile (7:3 per vol) (per celle di grafite LiNi0.8Co0.1Mn0.1O2||). Il primo elettrolita consente all'elettrodo di grafite di raggiungere 180 mAh g−1 a 50°C (1C = 370 mAh g−1), che è 10 volte superiore a quello di un elettrolita convenzionale. Quest'ultimo elettrolita consente alle celle di LiNi0.8Co0.1Mn0.1O2|| di grafite (2 mAh cm−2, rapporto N/P = 1) di fornire una capacità reversibile da record di 170 mAh g−1 a 4°C di carica e 0,3°C di scarica . Questo lavoro svela i meccanismi chiave per XFC e fornisce istruttivi principi di progettazione degli elettroliti per pratici LIB a ricarica rapida con anodi di grafite.

Riferimenti

  1. https://doi.org/10.1002/adma.202206020

Batteria agli ioni di litio ad alta tensione e alta densità energetica, a basso costo e priva di metallo

| Jerry Huang

Batteria agli ioni di litio ad alta tensione e alta densità energetica, a basso costo e priva di metallo

Nota del redattore: i ricercatori segnalano un'innovativa elettrochimica ad alta tensione ad alta densità di energia della batteria agli ioni di litio che è economica e priva di metalli (rispettosa dell'ambiente). Questa batteria organica agli ioni di litio di classe 4 V presenta un'elevata capacità teorica e un alto voltaggio, mentre i loro pratici materiali catodici ed elettroliti rimangono inesplorati.

Le piccole molecole organiche redox-attive sono applicabili ai catodi di batterie agli ioni di litio ad alta tensione (> 4 V)?

Di: Yuto Katsuyama, Hiroaki Kobayashi, Kazuyuki Iwase, Yoshiyuki Gambe, Itaru Honma | Pubblicato per la prima volta: 10 marzo 2022 su Advanced Science

4 batterie organiche agli ioni di litio di classe V

Mentre le batterie organiche agli ioni di litio hanno attirato grande attenzione a causa delle loro elevate capacità teoriche, i materiali catodici organici ad alta tensione rimangono inesplorati. Nell'articolo numero 2200187, Yuto Katsuyama, Hiroaki Kobayashi, Itaru Honma e colleghi riferiscono l'elettrochimica dell'acido croconico ad alta tensione. Indagini teoriche e sperimentali confermano che i due enolati nell'acido croconico mostrano circa 4 V redox, che possono essere utilizzati per l'accumulo di energia.

Astratto

Mentre le batterie organiche hanno attirato grande attenzione a causa delle loro elevate capacità teoriche, i materiali attivi organici ad alta tensione (> 4 V vs Li/Li+) rimangono inesplorati. Qui, i calcoli della teoria funzionale della densità sono combinati con misurazioni della voltammetria ciclica per studiare l'elettrochimica dell'acido croconico (CA) da utilizzare come materiale catodico per batterie agli ioni di litio sia negli elettroliti dimetilsolfossido che γ-butirrolattone (GBL). I calcoli DFT dimostrano che il sale di dilitio CA (CA–Li2) ha due gruppi enolati che subiscono reazioni redox superiori a 4,0 V e una densità di energia teorica a livello di materiale di 1949 Wh kg–1 per la conservazione di quattro ioni di litio in GBL, superando il valore di entrambi materiali catodici inorganici convenzionali e noti. Le misurazioni della voltammetria ciclica rivelano una reazione redox altamente reversibile da parte del gruppo enolato a ≈4 V in entrambi gli elettroliti. I test sulle prestazioni della batteria di CA come catodo della batteria agli ioni di litio in GBL mostrano due plateau di tensione di scarica a 3,9 e 3,1 V e una capacità di scarica di 102,2 mAh g–1 senza perdita di capacità dopo cinque cicli. Con le tensioni di scarica più elevate rispetto alle piccole molecole organiche note e all'avanguardia, CA promette di essere un candidato materiale catodico di prim'ordine per le future batterie organiche agli ioni di litio ad alta densità di energia.

Riferimenti:

  1. https://doi.org/10.1002/advs.202200187

Svelata una tecnologia rivoluzionaria di LFP a bassa temperatura

| Jerry Huang

Svelata una tecnologia rivoluzionaria di LFP a bassa temperatura

Il 15 aprile, un team di ricerca e sviluppo di Changzhou Liyuan New Energy Co ha annunciato a Nanchino che l'azienda aveva compiuto un passo avanti tecnologico sul materiale catodico LFP, che ha migliorato significativamente le prestazioni dell'LFP, nonché la velocità di carica, a bassa temperatura.

Un veicolo elettrico alimentato da una batteria LFP convenzionale ha il suo ovvio svantaggio di ansia da autonomia, ovvero la sua autonomia è spesso circa il 50% della sua gamma NEDC / WLTP / EPA dichiarata a basse temperature come -20 ℃.

Si dice che il nuovo materiale LFP, "LFP-1", sia stato sviluppato da più di 20 esperti di ricerca e sviluppo del suo centro di ricerca di Shenzhen dopo oltre 2.000 esperimenti ripetuti in otto anni e il team di ricerca e sviluppo ha vinto 5 brevetti con esso.

Si dice che le prestazioni rivoluzionarie di "LFP-1" siano ottenute stabilendo canali di trasporto degli ioni di litio ad alta velocità all'interno del materiale catodico insieme alla tecnologia all'avanguardia delle "sfere energetiche"; e le caratteristiche del materiale:

  • Aumento del tasso di capacità di scarica della batteria LFP dal 55% all'85% a -20℃ gradi e da quasi zero al 57% a -40℃ gradi.

  • Raggiungere un'autonomia di 500 chilometri in soli 15 minuti di ricarica rapida con velocità 4C. In confronto, un veicolo elettrico alimentato da una batteria LFP convenzionale richiede solitamente 40 minuti di ricarica rapida per raggiungere un'autonomia di circa 550 chilometri.

Poworks

Poworks è un produttore professionale e fornitore di composti di litio.

Archivio