Zellchemie-Rennen: Lithium-gegen-Natrium-Systeme

| Jerry Huang

Die Forschung zu Lithium-Schwefel- (Li/S 8 ) und Lithium-Sauerstoff- (Li/O 2 )-Batterien bei Raumtemperatur hat in den letzten zehn Jahren deutlich zugenommen. Der Wettlauf um die Entwicklung solcher Zellsysteme wird vor allem durch die sehr hohe theoretische Energiedichte und den Überfluss an Schwefel und Sauerstoff motiviert. Die Zellchemie ist jedoch komplex, und Fortschritte in Richtung praktischer Geräteentwicklung bleiben durch einige grundlegende Schlüsselfragen behindert, die derzeit mit zahlreichen Ansätzen angegangen werden.

Über die analogen natriumbasierten Batteriesysteme ist überraschenderweise nicht viel bekannt, obwohl die bereits kommerzialisierten Hochtemperatur-Na/S 8 - und Na/NiCl 2 -Batterien nahelegen, dass ein Akku auf Natriumbasis großtechnisch machbar ist. Darüber hinaus ist die natürliche Fülle von Natrium ein attraktiver Vorteil für die Entwicklung von Batterien auf Basis kostengünstiger Komponenten.

Diese Übersicht bietet eine Zusammenfassung des aktuellen Wissensstandes zu Lithium-Schwefel- und Lithium-Sauerstoff-Batterien und einen direkten Vergleich mit den analogen Natriumsystemen. Die allgemeinen Eigenschaften, Hauptvorteile und Herausforderungen, aktuelle Strategien zur Leistungsverbesserung und allgemeine Richtlinien für die Weiterentwicklung werden zusammengefasst und kritisch diskutiert. Im Allgemeinen hat die Substitution von Lithium durch Natrium einen starken Einfluss auf die Gesamteigenschaften der Zellreaktion und es sind daher Unterschiede in Ionentransport, Phasenstabilität, Elektrodenpotential, Energiedichte usw. zu erwarten.

Ob diese Unterschiede einer reversibleren Zellchemie zugute kommen, ist noch offen, aber einige der ersten Berichte über Na/S 8 - und Na/O 2 -Zellen bei Raumtemperatur zeigen bereits einige aufregende Unterschiede im Vergleich zu den etablierten Li/S 8 und Li/O 2 -Systeme.

Wiederaufladbare Lithium-Ionen-Batterien (LIBs) haben sich seit ihrer Kommerzialisierung Anfang der 1990er Jahre schnell zur wichtigsten Form der Energiespeicherung für alle mobilen Anwendungen entwickelt. Dies liegt vor allem an ihrer konkurrenzlosen Energiedichte, die andere wiederaufladbare Batteriesysteme wie Metall-Hydrid oder Blei-Säure bei weitem übertrifft. Das anhaltende Bedürfnis, Strom noch sicherer, kompakter und kostengünstiger zu speichern, erfordert jedoch kontinuierliche Forschung und Entwicklung.

Der Bedarf an kostengünstigen stationären Energiespeichern ist zu einer zusätzlichen Herausforderung geworden, die auch die Forschung nach alternativen Batterien anstößt. Große Anstrengungen werden auf die kontinuierliche Verbesserung der verschiedenen Li-Ionen-Technologien gerichtet, beispielsweise durch effizientere Verpackung, Verarbeitung, bessere Elektrolyte und optimierte Elektrodenmaterialien. Obwohl in den letzten Jahren erhebliche Fortschritte hinsichtlich der Leistungsdichte erzielt wurden, war der Anstieg der Energiedichte (volumetrisch und gravimetrisch) relativ gering. Ein Vergleich verschiedener Batterietechnologien hinsichtlich ihrer Energiedichten ist in Abbildung 1 dargestellt.

Theoretische und (geschätzte) praktische Energiedichten verschiedener Akkus.

Abbildung 1: Theoretische und (geschätzte) praktische Energiedichten verschiedener Akkus: Pb – Säure – Bleisäure, NiMH – Nickel-Metallhydrid, Na-Ion – Schätzung abgeleitet aus Daten für Li-Ionen unter Annahme einer etwas niedrigeren Zellspannung, Li- Ionen – Mittelwert über verschiedene Typen, HT-Na/S 8 – Hochtemperatur-Natrium-Schwefel-Batterie, Li/S 8 und Na/S 8 – Lithium-Schwefel- und Natrium-Schwefel-Batterie unter Annahme von Li 2 S und Na2S als Entladungsprodukte, Li /O 2 und Na/O 2 – Lithium-Sauerstoff-Batterie (theoretische Werte beinhalten das Gewicht des Sauerstoffs und hängen von der Stöchiometrie des angenommenen Entladungsprodukts, dh Oxid, Peroxid oder Superoxid ab). Beachten Sie, dass die Werte für praktische Energiedichten je nach Batteriedesign (Größe, hohe Leistung, hohe Energie, Einzelzelle oder Batterie) und dem Entwicklungsstand stark variieren können. Alle Werte für praktische Energiedichten beziehen sich auf Zellniveau (außer Pb-Säure, 12 V). Die Werte für die Li/S 8 und Li/O 2 Batterien wurden der Literatur entnommen (im Haupttext zitiert) und dienen zur Abschätzung der Energiedichten für die Na/S 8 und Na/O 2 Zellen. Von den oben genannten Technologien wurden bisher nur Bleisäure-, NiMH-, Li-Ionen- und Hochtemperatur-Na/S 8 -Technologien kommerzialisiert.

Verweise:

  1. https://www.beilstein-journals.org/bjnano/articles/6/105

Poworks

Poworks ist ein professioneller Hersteller und Lieferant von Lithium-Verbindungen.

Archiv