Oczekuje się, że zostanie zbudowany niskoemisyjny system zasilania

| Jerry Huang

W dniu 15 lipca 2024 r. Chińska Narodowa Komisja Rozwoju i Reform (NDRC) oraz Krajowa Administracja Energii (NEA) wydały „Program transformacji niskoemisyjnej i budowy elektrowni węglowych (2024-2027)”, w którym stwierdza się, że: Do 2025 r. rozpoczną się wszystkie projekty transformacji niskoemisyjnej pierwszych elektrowni węglowych i zostaną wdrożone szereg niskoemisyjnych technologii energetycznych; emisje dwutlenku węgla w ramach odpowiednich projektów zostaną zmniejszone o około 20% na kilowatogodzinę w porównaniu z 2023 r., nawet wyraźnie poniżej emisji dwutlenku węgla z istniejących zaawansowanych elektrowni węglowych, zdobywając w ten sposób cenne doświadczenia w zakresie czystej i niskoemisyjnej -transformacja węglowa elektrowni węglowych. Dostosowując transformację niskoemisyjną istniejących bloków węglowych i budowę nowych niskoemisyjnych bloków węglowych w sposób skoordynowany, dążymy do przyspieszenia budowy nowego systemu energetycznego, który będzie czysty, niskoemisyjny, bezpieczny i wysoce wydajny.

Według odpowiednich prognoz do 2030 roku emisja CO2 z elektrowni węglowych wyniesie około 4 miliardów ton. Dlatego niskoemisyjne technologie energetyki węglowej są kluczowym wsparciem w osiągnięciu chińskiego celu „2030–2060 Carbon Peak & Carbon Neutral”. Jak zatem energetyka węglowa mogłaby osiągnąć dekarbonizację?

01 Transformacja dekarbonizacji energetyki węglowej i metody jej budowy

Zgodnie z Programem niskoemisyjnej transformacji i budowy elektrowni węglowych (2024-2027) istnieją trzy konkretne sposoby transformacji energetyki węglowej w niskoemisyjną:

1, Mieszanie biomasy. Wykorzystując zasoby biomasy, takie jak odpady rolne i leśne, odpady oraz rośliny wytwarzające energię odnawialną, a także biorąc pod uwagę zrównoważone dostawy zasobów biomasy, bezpieczeństwo, elastyczność, efektywność operacyjną i wykonalność ekonomiczną, jednostki wytwórcze opalane węglem powinny być sprzęgane z biomasą wytwarzanie energii. Po transformacji i budowie elektrownie węglowe powinny mieć możliwość mieszania powyżej 10% paliw z biomasy, co znacząco obniży zużycie węgla i emisję dwutlenku węgla.

2, Mieszanie zielonego amoniaku. Poprzez zastosowanie zielonego amoniaku w jednostkach węglowych w celu wytworzenia energii elektrycznej i zastąpienia części węgla. Bloki węglowe powinny mieć możliwość spalania więcej niż 10% zielonego amoniaku po transformacji i budowie, mając na celu wyraźne zmniejszenie zużycia węgla i emisji dwutlenku węgla.

3, Wychwytywanie, wykorzystanie i składowanie dwutlenku węgla. Przyjęcie metod chemicznych, technologii adsorpcyjnych, membranowych i innych w celu oddzielania i wychwytywania dwutlenku węgla w gazach spalinowych z kotłów węglowych. Wychwytuj, oczyszczaj i kompresuj dwutlenek węgla poprzez regulację ciśnienia i temperatury. Promuj zastosowanie technologii geologicznych, takich jak efektywne wydobywanie ropy za pomocą dwutlenku węgla. Aby uzyskać metanol, należy zastosować technologie chemiczne, takie jak dwutlenek węgla i wodór. Wdrożyć geologiczne składowanie dwutlenku węgla zgodnie z lokalnymi warunkami.

02 Drogi transformacji w kierunku niskoemisyjnej energetyki węglowej

Ekspansja czystej energii, w tym energii wodnej, wiatrowej i słonecznej, jest kluczem do realizacji planów dostaw energii niskoemisyjnej. Po zaspokojeniu rosnącego zapotrzebowania na energię konieczna jest dalsza wymiana istniejącej energii węglowej w celu przejścia na energetykę niskoemisyjną. Po roku 2030 energetyka niekopalna zastąpi dotychczasową energetykę węglową i stanie się głównym elementem zaopatrzenia w energię; a po 2050 r. udział energetyki węglowej w całkowitym zaopatrzeniu Chin w energię będzie wynosić mniej niż 5%.

Według badania przeprowadzonego na Uniwersytecie Renmin w Chinach na temat perspektyw rozwoju przejścia na niskoemisyjną energetykę węglową w Chinach, można je podzielić na trzy etapy:

1. Od teraz do roku 2030, będącego okresem przygotowawczym do przejścia na gospodarkę niskoemisyjną, moce elektrowni węglowych będą nadal umiarkowanie rosły przed rokiem 2030, jednocześnie nowa energia stanie się większością wzrostu dostaw energii, a udział energii wiatrowej i słonecznej do roku 2030 moc zainstalowana przekroczy 40%.

2, Rok 2030-2045 jako szybki okres przejściowy, po roku 2030 udział energii wiatrowej i słonecznej gwałtownie przekroczy udział energii węglowej, stając się głównym źródłem zasilania systemu elektroenergetycznego. Elektrownie węglowe należy połączyć z technologią biomasy, CCUS i innymi czystymi technologiami niskoemisyjnymi, zmniejszając w ten sposób emisję dwutlenku węgla.

3, Rok 2045 -2060 jako okres wzmocnienia i poprawy dostaw energii, do 2050 r. zapotrzebowanie na energię elektryczną zostanie nasycone, energia węglowa zostanie całkowicie przekształcona w źródło zasilania dostosowawczego, służącego trawieniu i absorpcji głównej mocy energii wiatrowo-słonecznej oraz zapewnienie zasilania awaryjnego i rezerwowego. Perspektywy dotyczące energii wiatrowej i energii słonecznej w porównaniu z energią węglową

Oto przykład bazy mocy na pustyni Kubuqi. Całkowita planowana moc bazy energetycznej Kubuqi wynosi 16 milionów kilowatów, w tym energia fotowoltaiczna 8 milionów kilowatów, energia wiatrowa 4 miliony kilowatów i zaawansowana, wysokowydajna moc elektrowni węglowych wynosząca 4 miliony kilowatów. Zrealizowane projekty energii słonecznej są spektakularne, a 2 mln kW zainstalowanej mocy fotowoltaicznej jest już w użyciu. Szacuje się, że jeśli wszystkie projekty zostaną w pełni ukończone, około 40 miliardów kWh energii elektrycznej będzie można dostarczyć milionom rodzin rocznie, przy czym czysta energia będzie stanowić ponad 50% całości, co odpowiada oszczędności około 6 milionów ton energii standardowy węgiel i ograniczenie emisji dwutlenku węgla o około 16 mln ton rocznie. Planuje się, że w drodze będzie więcej baz czystej energii.Energia słoneczna Kubuqi01 Zbudowano pierwsze panele słoneczneEnergia słoneczna Kubuqi02 Panele słoneczne rok późniejEnergia słoneczna Kubuqi03 Baza energii słonecznej pięć lat później

Jeśli chodzi o pojazdy elektryczne i infrastrukturę ładowania, według statystyk do końca maja 2024 r. całkowita liczba infrastruktur ładowania pojazdów elektrycznych w całych Chinach wyniosła 9,92 mln jednostek, co oznacza wzrost o 56% rok do roku. Wśród nich liczba publicznych stacji ładowania i sektora prywatnego wzrosła odpowiednio do 3,05 mln i 6,87 mln, przy stopach wzrostu odpowiednio 46% i 61% r/r. Oznacza to, że Chiny zbudowały największą na świecie sieć infrastruktury ładowania, obejmującą najszerszy obszar usług i zakres rodzajów ładowania.

Poworks

Poworks jest profesjonalnym producentem i dostawcą związków litu.

Archiwum